Ground states for a class of asymptotically periodic Schrödinger–Poisson systems with critical growth

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

Existence of Positive Ground State Solutions for a Class of Asymptotically Periodic Schrödinger-poisson Systems

In this article, by using variational method, we study the existence of a positive ground state solution for the Schrödinger-Poisson system −∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R, −∆φ = K(x)u, x ∈ R, where V (x),K(x) and f(x, u) are asymptotically periodic functions in x at infinity.

متن کامل

positive solutions for asymptotically periodic kirchhoff-type equations with critical growth

in this paper‎, ‎we consider the following kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$uin h^{1}(mathbb{r}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎the aim of this paper is to study the existence of positive ...

متن کامل

MULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS

In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations

سال: 2017

ISSN: 1417-3875

DOI: 10.14232/ejqtde.2017.1.97